

m s e ®

MSE[®] SEAL Optimum Sealing Solutions

HIGH-PERFORMANCE, LOW-FRICTION SEAL

The MSE[®] seal's superior designed "dual-lip body" gives improved sealing performance. Because our expertise in custom design and fabrication leads innovative designs, special configurations of MSE seals are limitless.

Anti-Blowout MSE Seals

Greene, Tweed has developed a specially configured MSE Seal for applications where the dynamic sealing surface is withdrawn past the seal interface while the seal remains under pressure.

The seal and housing geometry shown allows the withdrawal/ removal of the dynamic sealing surface without the seal being "blown" from its gland.

The seal is manufactured from Greene, Tweed's proprietary grades of PTFE, creating extremely low-friction characteristics. Seals operate at pressures to 6,000 psi; however, higher pressures can be achieved.

The seals unique design gives secure sealing over repeated demanding applications.

FEATURES & BENEFITS

Low Friction

- · Low power absorption and torque requirements
- · Friction can be adjusted and controlled
- · Ability to run dry or lubricated giving a long service life

Chemically inert

- · Virtually unlimited media service with one seal
- · Low-cost alternative to expensive elastomers
- · Sensitive media not contaminate

Wide temperature performance envelope

• Cryogenic to 600°F (316°C) with excellent performance at extreme temperatures

Pressure range from vacuum to 4,000 bar (58,000 psi) and above. Unlimited shelf life. Machinable for fitting existing O-ring grooves and sizes from 1/8" to 120" (3mm to 304.8mm)

APPLICATIONS

- Pumps
- Valves
- Metering
- · Dispensing equipment
- · Pressure switches
- · Blowout preventors
- Blast hole drills
- Well heads
- Rock hammers
- Ball valves/gate valves
- · Butterfly valves
- Drilling equipment
- · Subsea safety valves
- · Logging equipment
- · Cementing equipment

ىم

© 2005, Greene, Tweed all rights reserved 03/05-GT DS-US-0F-016

Contact Us

Greene, Tweed & Co.	Tel: +1.281.765.4500
Oilfield	Tel: +1.800.927.3301
Houston, TX, USA	Fax: +1.281.765.4553
www.gtweed.com	

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty that shall be applicable to such products.

Figure 5-1 Elastomer-Loaded MSE Seal

How MSE[®] Seals Work

The MSE seal is a sealing device consisting of a PTFE or other polymeric component, energized by a corrosion-resistant metal spring or an elastomeric O-ring. When the seal is seated in the gland, the spring is under compression applying force on the gland sealing surfaces, thereby creating a tight barrier to prevent gas or fluids from leaking. The spring also provides resiliency to compensate for seal wear, gland misalignment or eccentricity. While spring force provides adequate force for sealing at low pressure, at high pressure the system pressure augments the spring force to provide an even tighter seal. The MSE seals are precision machined from PTFE, filled PTFE and other high-performance polymers.

MSE seals are recommended for applications where elastomeric seals do not work satisfactorily due to extreme operating conditions.

Figure 5-2 Elastomer-Loaded MSE Seal

Greene, Tweed & Co. offers over 100 seal materials, a variety of standard spring materials and three standard spring designs to meet your needs. These options allow the design engineer great latitude in developing the best seal for the job.

Features and Benefits

Chemically Inert

• Virtually unlimited chemical compatibility (except molten alkali metals, fluorine gas at high temperatures and chlorine trifluoride ClF₃)

Low Friction

- · Smooth and consistent breakout and running friction
- Low power absorption and torque requirements
- Capable of running dry or lubricated

Greene, Tweed & Co. Fluid Handling Group 1910 Rankin Road · Houston, TX 77073 · Tel: 281-821-2094 · Fax: 281-821-2696 2075 Detwiler Road · Kulpsville, PA 19443 · Tel: 215-256-9521 · Fax: 215-256-0189

 Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty which shall be applicable to such products.

 MSE* is a registered trademark of Greene, Tweed & Co.
 Copyright 2002, Greene, Tweed & Co.
 09/02-GTC
 US-3230-025

MSE[®] Seal Types Finger Spring (Series 2000)

Operating T	Vacuum	
Min	Max	Sealability
-65° C	Fair	
	Application	
This type of seal is des with a balance of good this type seal in applic over 50,000 inches of	signed mainly for dynar I sealability, long life an ations where the seals a travel at speeds up to 2:	nic applications ad low friction. Use re expected to last 50 ft/min.
Seals are available in p	biston, rod, face and spe	cial configurations.

Figure 5-4 Finger Spring

Figure 5-5 Coil Spring

Coil Spring (Series 3000)

Operating To	Vacuum	
Min	Max	Sealability
-173° C	Good	
	Application	
This type of seal is des	signed for static and slo	w dynamic applica-
tions; sacrificing some	flexibility for improved	d sealability. Use this

tions; sacrificing some flexibility for improved sealability. Use this type of seal where the application is mostly static with occasional dynamic function.

Seals are available in piston, rod, face and special configurations.

Greene, Tweed & Co. Fluid Handling Group 1910 Rankin Road · Houston, TX 77073 · Tel: 281-821-2094 · Fax: 281-821-2696 2075 Detwiler Road · Kulpsville, PA 19443 · Tel: 215-256-9521 · Fax: 215-256-0189

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty which shall be applicable to such products. MSE* is a registered trademark of Greene, Tweed & Co. Copyright 2002, Greene, Tweed & Co. 09/02-GTC US-3230-025

Double Coil Spring (Series 5000)

Operating T	Vacuum								
Min	Max	Sealability							
-268° C	Best								
	Application								
This type of seal is designed for static applications. The high spring load ensures better sealability than a single spring seal. Use this type of seal where sealability is most critical.									
Seals are available in p	biston, rod, face and spe	cial configurations.							

Figure 5-6 Double Coil Spring

Figure 5-7 O-ring Energized

O-Ring Energized

Operating T	Vacuum	
Min	Sealability	
*	Good	
	Application	-
This type of seal is des The O-ring energizer i not desirable.	signed for static or dyna s used in cases where a	mic applications. metal spring is
Seals are available in p	biston, rod, face and spe	ecial configurations.

The Inside Advantage®

Greene, Tweed & Co. Fluid Handling Group 1910 Rankin Road · Houston, TX 77073 · Tel: 281-821-2094 · Fax: 281-821-2696 2075 Detwiler Road · Kulpsville, PA 19443 · Tel: 215-256-9521 · Fax: 215-256-0189

 Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty which shall be applicable to such products.

 MSE* is a registered trademark of Greene, Tweed & Co.
 Copyright 2002, Greene, Tweed & Co.
 09/02-GTC
 US-3230-025

Machined Metal Spring (Series 7000)

Operating T	Vacuum				
Min	Max	Sealability			
-273° C	288° C	Best			

This type of seal is designed for static applications only, where sealability is most important. The solid spring design ensures low permeation and uniform spring loading, providing best leakage control.

Seals are available in face seal configuration only.

Special design MSE seals are also available and are recommended for applications where the temperature exceeds the temperatures shown. The shapes shown are the typical configurations. Every design has many possible permutations and adaptations.

How to Order an MSE[®] Seal from Greene, Tweed

MSE seals are available in a variety of designs, spring materials and jacket materials. Select the seal that best fits your application.

Part Number Selection

Standard MSE seals can be ordered by determining the Greene, Tweed part number. Special designs and sizes require Greene, Tweed Engineering Department input for part number assignment.

MSE Seal Standard Part Number

Figure 5-8 Machined Metal Spring

Field # 1 – Seal Type

- R = Rod Seal
- P = Piston Seal
- E = External Pressure Face Seal
- I = Internal Pressure Face Seal
- Field # 2 Seal Series (See MSE Seal Types, table 5-12)
- Field # 3 Dash Size (See Gland Dimensions, table 5-11)
- Field # 4 Spring Material (See Spring Materials, table 5-17)
- Field # 5 Jacket Material (See Jacket Materials, table 5-18)

Greene, Tweed & Co. Fluid Handling Group

1910 Rankin Road · Houston, TX 77073 · Tel: 281-821-2094 · Fax: 281-821-2696 2075 Detwiler Road · Kulpsville, PA 19443 · Tel: 215-256-9521 · Fax: 215-256-0189

 Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty which shall be applicable to such products.

 MSE* is a registered trademark of Greene, Tweed & Co.
 Copyright 2002, Greene, Tweed & Co.
 09/02-GTC
 US-3230-025

MSE[®] SEALS

Gland Dimensions

To select the dash size, refer to Figure 5-9 and Tables 5-10, 5-11 for rod and piston seals and Figure 5-12 and Tables 5-13, 5-14 for internal and external pressure face seals. For diameters larger than the ones shown on these tables, consult the MSE* Seal Design Guide.

Figure 5-9

Table 5-10: Rod and Piston	Gland Designs j	for MSE®	Seals
----------------------------	-----------------	----------	-------

Dash Size	Nominal X-Section	H Ref	G	C	D Min	J	К	R Max	Z Max
			+.010 000	+.004 004		+.003 003	+.002 002		
-006 through -033	1/16"	0.062	0.094	0.158	0.075	0.012	0.012	0.015	0.003
-106 through -150	3/32"	0.094	0.141	0.188	0.100	0.016	0.018	0.015	0.003
-202 through -246	1/8"	0.125	0.188	0.222	0.120	0.018	0.025	0.015	0.003
-318 through -362	3/16"	0.187	0.281	0.347	0.150	0.028	0.030	0.020	0.004
-405 through -449	1/4"	0.250	0.375	0.442	0.190	0.028	0.043	0.030	0.004

Dimensions in inches.

Greene, Tweed & Co. Fluid Handling Group 1910 Rankin Road · Houston, TX 77073 · Tel: 281-821-2094 · Fax: 281-821-2696 2075 Detwiler Road · Kulpsville, PA 19443 · Tel: 215-256-9521 · Fax: 215-256-0189

 Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty which shall be applicable to such products.

 MSE* is a registered trademark of Greene, Tweed & Co.
 Copyright 2002, Greene, Tweed & Co.
 09/02-GTC
 US-3230-025

MSE[®] SEALS

G =	.094/.	104	[G =	: .141/.	151	G =	: .188/.1	198]	G =	G = .281/.291		G =	G = .375/.38		
Dash	A	В		Dash	Α	В	Dash	Α	В	1	Dash	A	В		Dash	A	В
Size	Dia	Dia		Size	Dia	Dia	Size	Dia	Dia		Size	Dia	Dia		Size	Dia	Dia
	+.002	+.000			+.002	+.000		+.002	+.000	1		+.002	+.000			+.002	+.000
-006	0.250	002		-106	002	002	-202	002	002		-318	002	002		-405	2 500	2 000
-007	0.281	0.156		-107	0.406	0.219	-202	0.562	0.312		-319	1.437	1.062		-406	2.625	2.125
-008	0.312	0.187		-108	0.437	0.250	-204	0.625	0.375		-320	1.500	1.125		-407	2.750	2.250
-009	0.343	0.218		-109	0.500	0.313	-205	0.687	0.437		-321	1.562	1.187		-408	2.875	2.375
-010	0.375	0.250		-110	0.562	0.375	-206	0.750	0.500		-322	1.625	1.250		-409	3.000	2.500
-011	0.437	0.312		-111	0.625	0.438	-207	0.812	0.562		-323	1.687	1.312		-410	3.125	2.625
-012	0.500	0.375		-112	0.687	0.500	-208	0.875	0.625		-324	1.750	1.375		-411	3.250	2.750
-013	0.562	0.437		-113	0.750	0.563	-209	0.937	0.687		-325	1.875	1.500		-412	3.375	2.875
-014	0.625	0.500		-114	0.812	0.625	-210	1.000	0.750		-326	2.000	1.625		-413	3.500	3.000
-015	0.687	0.562		-115	0.875	0.688	-211	1.062	0.812		-327	2.125	1.750		-414	3.625	3.125
-016	0.750	0.625		-116	0.937	0.750	-212	1.125	0.875		-328	2.250	1.875		-415	3.750	3.250
-017	0.812	0.687		-117	1.000	0.813	-213	1.187	0.937		-329	2.375	2.000		-416	3.875	3.375
-018	0.875	0.750		-118	1.062	0.875	-214	1.250	1.000		-330	2.500	2.125		-417	4.000	3.500
-019	0.937	0.812		-119	1.125	0.938	-215	1.312	1.062		-331	2.625	2.250		-418	4.125	3.625
-020	1.000	0.875		-120	1.187	1.000	-216	1.375	1.125		-332	2.750	2.375		-419	4.250	3.750
-021	1.062	0.937		-121	1.250	1.063	-217	1.437	1.187		-333	2.875	2.500		-420	4.375	3.875
-022	1.125	1.000		-122	1.312	1.125	-218	1.500	1.250		-334	3.000	2.625		-421	4.500	4.000
-023	1.187	1.062		-123	1.375	1.188	-219	1.562	1.312		-335	3.125	2.750		-422	4.625	4.125
-024	1.250	1.125		-124	1.437	1.250	-220	1.625	1.375		-336	3.250	2.875		-423	4.750	4.250
-025	1.312	1.187		-125	1.500	1.313	-221	1.687	1.437		-337	3.375	3.000		-424	4.875	4.375
-026	1.375	1.250		-126	1.562	1.375	-222	1.750	1.500		-338	3.500	3.125		-425	5.000	4.500
-027	1.437	1.312		-127	1.625	1.438	-223	1.875	1.625		-339	3.625	3.250		-426	5.125	4.625
-028	1.500	1.375		-128	1.687	1.500	-224	2.000	1.750		-340	3.750	3.375		-427	5.250	4.750
-029	1.625	1.500		-129	1.750	1.563	-225	2.125	1.875		-341	3.875	3.500		-428	5.375	4.875
-030	1.750	1.625		-130	1.812	1.625	-226	2.250	2.000		-342	4.000	3.625		-429	5.500	5.000
-031	1.875	1.750		-131	1.875	1.688	-227	2.375	2.125		-343	4.125	3.750		-430	5.625	5.125
-032	2.000	1.875		-132	1.937	1.750	-228	2.500	2.250		-344	4.250	3.875		-431	5.750	5.250
-033	2.125	2.000		-133	2.000	1.813	-229	2.625	2.375		-345	4.375	4.000		-432	5.875	5.375
Dimension	s in inches.			-134	2.062	1.8/5	-230	2.750	2.500		-346	4.500	4.125		-433	6.000	5.500
				-135	2.125	1.938	-231	2.875	2.625		-34/	4.625	4.250		-434	6.125	5.625 5.750
	Cue			-130	2.18/	2.000	-232	3.000	2.750		-348	4./50	4.375		-435	6.250	5./50 5.075
	Gree	ene		-13/	2.230	2.005	-233	3.123	2.873		-549	4.873	4.300		-430	6.575	5.875 6.000
	IIWE	eea		-130	2.312	2.123 2.188	-234	3.230	3.000		-550	5.000	4.025		-457	6 750	6.000
ne insio	ie Adva	ntage		-139	2.373	2.100	-235	3.575	3.125		-551	5 250	4.750		-438 /30	7.000	6.230 6.500
ireene, 1	weed &	z Co .		-140 141	2.437	2.230	-230	3.500	3.250		-352	5 3 7 5	5.000		-439	7.000	6.300 6.750
luid Har	ndling G	roup		-141 142	2.500	2.313	-237	3.023	3.575		-555	5.575	5.000		-440	7.230	7.000
910 Kan	KIII KOAG	ג 72		-142 1/3	2.302	2.373	-230	3.750	3.500		355	5.500	5 250		-++1	7.300	7.000
el: 281-8	17 770	, .		-144	2.623	2.438	-239	4 000	3 750		-356	5 750	5 375		-443	8,000	7 500
ax: 281-8	321-269	6		-145	2.750	2.563	-241	4 125	3 875		-357	5 875	5 500		-444	8 2 5 0	7 750
				-146	2.812	2.625	-242	4 250	4 000		-358	6,000	5 625		-445	8 500	8,000
ISE* is a re reene. Two	egistered tra ed & Co	ademark of Convright		-147	2.875	2.688	-243	4.375	4.125		-359	6.125	5.750		-446	9.000	8.500
002, Greene,	Tweed & Co.	09/02-GTC		-148	2.937	2.750	-244	4.500	4.250		-360	6.250	5.875		-447	9.500	9.000
S-3230-025				-149	3.000	2.813	-245	4.625	4.375		-361	6.375	6.000		-448	10.000	9.500
				-150	3.062	2.875	-246	4.750	4.500		-362	6.625	6.250		-449	10.500	10.000
			- 1														

Table 5-11: Rod and Piston Gland Sizes for MSE[®] Seals

>

G F 1 H Te E

М G 20 U

Figure 5-12

Table 5-13: Gland Depth and Length	
for MSE® Face Seals	

Dash Size	Nominal X-Section	Gland Depth D	Gland Length L
-0XX	1/16"	0.061/0.063	0.094/0.104
-1XX	3/32"	0.093/0.095	0.141/0.151
-2XX	1/8"	0.124/0.126	0.188/0.198
-3XX	3/16"	0.186/0.188	0.281/0.291
-4XX	1/4"	0.249/0.251	0.375/0.385

Dimensions in inches.

Greene, Tweed & Co. Fluid Handling Group

1910 Rankin Road · Houston, TX 77073 · Tel: 281-821-2094 · Fax: 281-821-2696 2075 Detwiler Road · Kulpsville, PA 19443 · Tel: 215-256-9521 · Fax: 215-256-0189

Ŋ

Table 5-14: Gland Dimensions for Internal and External Pressure MSE® Face Seals

D = .0	62 +/	.001	D = .	094 +/-	001	D = .	125 +/-	.001	D = .	187 +/-	001	D = .250 +/00		· .001	
L = .09	14/.104		L=	: .141/.1	151	L=	: .188/. 1	198	L =	: .281/.2	291		L =	.375/.3	385
Dash	Α	В	Dash	A	В	Dash	Α	В	Dash	Α	В		Dash	A	В
Size	Dia	Dia	Size	Dia	Dia	Size	Dia	Dia	Size	Dia	Dia		Size	Dia	Dia
	+.010 000	+.000 010		+.010 000	+.000 010		+.010 000	+.000 010		+.010 000	+.000 010			+.010 000	+.000 010
-016	0.750	0.625	-120	1.187	1.000	-216	1.375	1.125	-329	2.375	2.000		-413	3.500	3.000
-017	0.812	0.687	-121	1.250	1.063	-217	1.437	1.187	-330	2.500	2.125		-414	3.625	3.125
-018	0.875	0.750	-122	1.312	1.125	-218	1.500	1.250	-331	2.625	2.250		-415	3.750	3.250
-019	0.937	0.812	-123	1.375	1.188	-219	1.562	1.312	-332	2.750	2.375		-416	3.875	3.375
-020	1.000	0.875	-124	1.437	1.250	-220	1.625	1.375	-333	2.875	2.500		-417	4.000	3.500
-021	1.062	0.937	-125	1.500	1.313	-221	1.687	1.437	-334	3.000	2.625		-418	4.125	3.625
-022	1.125	1.000	-126	1.562	1.375	-222	1.750	1.500	-335	3.125	2.750		-419	4.250	3.750
-023	1.187	1.062	-127	1.625	1.438	-223	1.875	1.625	-336	3.250	2.875		-420	4.375	3.875
-024	1.250	1.125	-128	1.687	1.500	-224	2.000	1.750	-337	3.375	3.000		-421	4.500	4.000
-025	1.312	1.187	-129	1.750	1.563	-225	2.125	1.875	-338	3.500	3.125		-422	4.625	4.125
-026	1.375	1.250	-130	1.812	1.625	-226	2.250	2.000	-339	3.625	3.250		-423	4.750	4.250
-027	1.437	1.312	-131	1.875	1.688	-227	2.375	2.125	-340	3.750	3.375		-424	4.875	4.375
-028	1.500	1.375	-132	1.937	1.750	-228	2.500	2.250	-341	3.875	3.500		-425	5.000	4.500
-029	1.625	1.500	-133	2.000	1.813	-229	2.625	2.375	-342	4.000	3.625		-426	5.125	4.625
-030	1.750	1.625	-134	2.062	1.875	-230	2.750	2.500	-343	4.125	3.750		-427	5.250	4.750
-031	1.875	1.750	-135	2.125	1.938	-231	2.875	2.625	-344	4.250	3.875		-428	5.375	4.875
-032	2.000	1.875	-136	2.187	2.000	-232	3.000	2.750	-345	4.375	4.000		-429	5.500	5.000
-033	2.125	2.000	-137	2.250	2.063	-233	3.125	2.875	-346	4.500	4.125		-430	5.625	5.125
-034	2.250	2.125	-138	2.312	2.125	-234	3.250	3.000	-347	4.625	4.250		-431	5.750	5.250
-035	2.375	2.250	-139	2.375	2.188	-235	3.375	3.125	-348	4.750	4.375		-432	5.875	5.375
-036	2.500	2.375	-140	2.437	2.250	-236	3.500	3.250	-349	4.875	4.500		-433	6.000	5.500
-037	2.625	2.500	-141	2.500	2.313	-237	3.625	3.375	-350	5.000	4.625		-434	6.125	5.625
-038	2.750	2.625	-142	2.562	2.375	-238	3.750	3.500	-351	5.125	4.750		-435	6.250	5.750
-039	2.875	2.750	-143	2.625	2.438	-239	3.875	3.625	-352	5.250	4.875		-436	6.375	5.875
-040	3.000	2.875	-144	2.687	2.500	-240	4.000	3.750	-353	5.375	5.000		-437	6.500	6.000
-041	3.250	3.125	-145	2.750	2.563	-241	4.125	3.875	-354	5.500	5.125		-438	6.750	6.250
-042	3.500	3.375	-146	2.812	2.625	-242	4.250	4.000	-355	5.625	5.250		-439	7.000	6.500
-043	3.625	3.500	-147	2.875	2.688	-243	4.375	4.125	-356	5.750	5.375		-440	7.250	6.750
-044	3.875	3.750	-148	2.937	2.750	-244	4.500	4.250	-357	5.875	5.500		-441	7.500	7.000
-045	4.125	4.000	-149	3.000	2.813	-245	4.625	4.375	-358	6.000	5.625		-442	7.750	7.250
-046	4.375	4.250	-150	3.062	2.875	-246	4.750	4.500	-359	6.125	5.750		-443	8.000	7.500
-047	4.625	4.500	-151	3.187	3.000	-247	4.875	4.625	-360	6.250	5.875		-444	8.250	7.750
Dimension	s in inches.		-152	3.437	3.250	-248	5.000	4.750	-361	6.375	6.000		-445	8.500	8.000
			-153	3.687	3.500	-249	5.125	4.875	-362	6.625	6.250		-446	9.000	8.500
	Gre	ene	-154	3.937	3.750	-250	5.250	5.000	-363	6.875	6.500		-447	9.500	9.000
	ΙΤίλ	jeed	-155	4.187	4.000	-251	5.375	5.125	-364	7.125	6.750		-448	10.000	9.500
The Ins	ide Adv	/antage [®]	-156	4.437	4.250	-252	5.500	5.250	-365	7.375	7.000		-449	10.500	10.000
Greene	. Tweed	& Co.	-157	4.687	4.500	-253	5.625	5.375	-366	7.625	7.250		-450	11.000	10.500
Fluid H	andling	Group	-158	4.937	4.750	-254	5.750	5.500	-367	7.875	7.500		-451	11.500	11.000
1910 Ra	ankin Ro	ad	-159	5.187	5.000	-255	5.875	5.625	-368	8.125	7.750		-452	12.000	11.500
Houston	n, TX 77	′073	-160	5.437	5.250	-256	6.000	5.750	-369	8.375	8.000		-453	12.500	12.000
Tel: 281	-821-20	94	-161	5.687	5.500	-257	6.125	5.875	-370	8.625	8.250		-454	13.000	12.500

MSE* is a registered trademark of Greene, Tweed & Co. Copyright 2002, Greene, Tweed & Co. 09/02-GTC US-3230-025

Fax: 281-821-2696

MSE[®] SEALS

Spring Materials

The MSE[®] seal is energized by a corrosion-resistant metal spring. The spring compresses to apply force for sealing and provides resiliency to compensate for wear and misalignment.

Finger Springs are made by punching the pattern on a metal ribbon and then forming it into a "V" shape by the use of a force slide or a punch press.

Coil Springs are made by slicing a metal ribbon to the desired width, and then coiling it to a specified diameter with a coiling machine.

Finger Spring Figure 5-15

Canted	Coil	Spring

Flat Ribbon Coil Spring

Element 301 SS 17-7 **Elgiloy**[†] % % % Carbon С 0.15 - 2.0 0.09 max 0.1 Si 1.0 Silicone 1.0 max ____ 0.04 Phosphorus Р 0.045 max Sulphur S 0.03 max 0.03 Chromium Cr 16 - 18 16 - 18 20.0 Nickel Ni 6 - 8 6.50 - 7.75 15.0 Manganese Mn 1.0 2.0 ____ Molybdenum Mo 7.0 Cobalt Co 40.0 ____ 0.04 Berylium Be Aluminum Al 1.125 Iron Fe Balance Balance Balance

Table 5-16: Composition

[†]Registered trademark of the Elgiloy Company.

Greene, Tweed & Co. Fluid Handling Group 1910 Rankin Road · Houston, TX 77073 · Tel: 281-821-2094 · Fax: 281-821-2696

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty which shall be applicable to such products. MSE* is a registered trademark of Greene, Tweed & Co. Copyright 2002, Greene, Tweed & Co. 09/02-GTC US-3230-025

2075 Detwiler Road · Kulpsville, PA 19443 · Tel: 215-256-9521 · Fax: 215-256-0189

Material		301 SS	17-7	Elgiloy
Material Code		S	Р	E
Condition		FH	Condition C	45% CR
Tensile Strength	psi	185,000	220,000	220,000
Yield Strength	psi	140,000	190,000	185,000
Elongation	%	8	5	4
Hardness	Rc	41	43	45
Temperature Rating	°C	260	315	315
Corrosion Resistance		Good	Better	Best

Jacket Materials

MSE[®] seals are available in a variety of seal jacket materials, all designed for virtually unlimited chemical compatibility, low friction and a wide range of temperatures and pressures.

- Avalon[®] 01 High-quality virgin material with high tensile and elongation properties. Best chemical resistance.
- Avalon[®] 40 Good chemical and electrical properties, better creep resistance than PTFE or PFA, low permeability and more resistant to swelling by solvents than other polymers. CTFE material is also excellent in cryogenic applications.

- Table 5-17: Typical PhysicalProperties
- Avalon[®] 48 Mineral-filled PTFE. Good chemical and wear properties, nonabrasive in dynamic applica tions. Not recommended for aqueous applications, since the minerals tend to dissolve.
- Avalon[®] 50 Polyester-filled PTFE. Good wear, chemical and temperature properties. Not compatible with halogens.
- Avalon[®] 56 Modified PTFE. Excellent high temperature, creep and chemical resistance.
- Avalon[®] 57 Polyimide-filled PTFE. Excellent chemical wear and creep resistance. Recommended for dynamic applications. Nonabrasive against soft metals.

Material	Material Code	Description	Color	Tensile Strength	Elongation	Def. Under Load	Wear Factor
				psi	%	%	(K) x 10 ⁻¹⁰ in ³ -min/lb-ft-hr
Avalon 01	301	Virgin PTFE	White	5,000	350	8	2,500
Avalon 40	081	CTFE	Transparent White	5,700	150		
Avalon 48	348	Filled PTFE	White	3,000	275	5	1
Avalon 50	069	Filled PTFE	Tan	3,500	300	6	2
Avalon 56	356	Modified PTFE	White	4,600	500	3	2,500
Avalon 57	357	Filled PTFE	Light Brown	2,600	300	2	2

Table 5-18: Typical MSE® Seal Materials Used for Fluid Handling Applications

Greene, Tweed & Co. Fluid Handling Group

1910 Rankin Road · Houston, TX 77073 · Tel: 281-821-2094 · Fax: 281-821-2696 2075 Detwiler Road · Kulpsville, PA 19443 · Tel: 215-256-9521 · Fax: 215-256-0189

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty which shall be applicable to such products. MSE* and Avalon* are registered trademark of Greene, Tweed & Co. Copyright 2002, Greene, Tweed & Co. 09/02-GTC US-3230-025

MSE[®] SEALS

Hardware Surface Finish and Hardness Recommendations

Dynamic surface finish and hardness play a key role in hardware design. Good surface finish will reduce seal friction and increase seal life, while a high surface hardness will increase seal life as well as protect the hardware from being abraded by the seal material or by contaminants in the system.

Seal Installation and Installation Tools

The proper installation and the use of appropriate installation tools is imperative for the correct functioning of the seals. Most seal failures can be attributed to damaged seals resulting from improper installation.

Although MSE[®] seals can be slightly stretched or compressed (see Table 5-21), *it is strongly recommended that one-piece glands (non-split)* are avoided. If it is absolutely necessary to use one-piece glands, follow the suggestions on gland design and use proper installation tools. Avoid the use of screwdrivers and other metal tools, since the seals can be easily scratched and leakage will result. Table 5-19: Hardware Surface Finish

Media	Dynamic Surface	Static Surface
Cryogenic Freon Helium Gas Hydrogen Gas	4 - 8 RMA	4 - 8 RMA
Air Argon	6 - 12 RMA	12 - 32 RMA
Water	8 - 16 RMA	16 - 32 RMA

Table 5-20: Hardware Surface Hardness

Service	Optimum Hardness Rockwell "C" Scale
Static	Any hardness
Reciprocating	Rc 45 minimum
Rotary	Rc 55 minimum

Table 5-21: Maximum % of Seal Stretch or Compression Recommended

Piston Seals (Stretch)		Ro	d Seals (Compre	ess)	
Series 2000	Series 3000	Series 5000	Series 2000	Series 3000	Series 5000
8%	20%	15%	8%	15%	12%

Greene, Tweed & Co. Fluid Handling Group 1910 Rankin Road · Houston, TX 77073 · Tel: 281-821-2094 · Fax: 281-821-2696 2075 Detwiler Road · Kulpsville, PA 19443 · Tel: 215-256-9521 · Fax: 215-256-0189

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty which shall be applicable to such products. MSE^{*} is a registered trademark of Greene, Tweed & Co. Copyright 2002, Greene, Tweed & Co. 09/02-GTC US-3230-025

MSE[®] SEALS

Installation of Piston Seals into Closed Glands

When installing MSE[®] seals into blind glands, it is important not to overstress the seal material or the spring at localized points. In order to stretch the seal evenly, the use of a ramp and pushing device are recommended. After stretching, the seal will partially return to its original size. To ensure total recovery, the seal needs to be resized with a tool, which has the same inside diameter as the bore of the hardware.

The installation tools can be made out of Delrin,‡ UHMW (Ultra High Molecular Weight Polyethylene), PFA or PTFE.

Figure 5-23

Figure 5-22

Installation of Rod Seals into Closed Glands

To minimize the possibility of damage to the seal during installation, it is recommended to make the gland width at least 1.5 times the width of the seal plus a 45° angle at the front of the groove. The seal should be installed sideways until one side rests in the groove; then with the help of a pushing tool, work the rest of the seal into the groove. With the opposite end of the tool, resize the seal into the groove. The installation procedure can be eased by lubricants and by heating up the seal before installation.

* Delrin is a registered trademark of DuPont-Dow Elastomers.

Greene, Tweed & Co. Fluid Handling Group

1910 Rankin Road · Houston, TX 77073 · Tel: 281-821-2094 · Fax: 281-821-2696 2075 Detwiler Road · Kulpsville, PA 19443 · Tel: 215-256-9521 · Fax: 215-256-0189

The Inside Advantage®

 Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty which shall be applicable to such products.

 MSE* is a registered trademark of Greene, Tweed & Co.
 Copyright 2002, Greene, Tweed & Co.
 09/02-GTC
 US-3230-025

APPLICATION DATA SHEET

If your application parameters do not fit with-in th guidelines defined in this catalog, and you would like a complete Engineering review for your specific applications, fill out this Data Sheet and mail it or fax it to:

Greene, Tweed & Co. • 7101 Patterson Drive • Garden Grove, CA 92645 Phone (714) 897-8764 • Fax (714) 373-1763

COMPANY INFORMATION

COMPANY	ENGRG. CONTACT
STREET	TEL.NO
CITY	PURCH. CONTACT
STATE & ZIP CODE	TEL. NO

APPLICATION DATA

OPERATING CONDITIONS	HARDWARE DATA	
MEDIA FLUID	SEAL TYPE (rod, piston, if, of)	
OPERATING PRESS.	BORE DIA.	
MAX. PRESS	ROD DIA	
OPERATING TEMP	GROOVE DIA	
MAX. TEMP	GLAND WIDTH	
MOTION	GLAND CROSS-SECTION	
SPEED/RATE	MATERIAL-BORE	ROD
STROKE	FINISH-BORE	ROD
ALLOWABLE LEAKAGE	HARDNESS-BORE	ROD
FRICTION REQ'D		
LIFE REO'D		

COMMENTS/SKETCHES

Greene, Tweed & Co. Fluid Handling Group 1910 Rankin Road · Houston, TX 77073 · Tel: 281-821-2094 · Fax: 281-821-2696 2075 Detwiler Road · Kulpsville, PA 19443 · Tel: 215-256-9521 · Fax: 215-256-0189

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty which shall be applicable to such products. Copyright 2002, Greene, Tweed & Co. 09/02-GTC US-3230-025

Elastomeric Seal Stack

VEE RINGS AND CUSTOM DESIGNED VEE STACKS

SEALING SOLUTIONS

Greene, Tweed has extensive experience in designing and manufacturing Vee rings and seal stacks incorporating elastomeric and/or thermoplastic end and central adapters.

SPECIALTY COMPOUNDS

Vee Ring applications require specially developed elastomer and thermoplastic compounds. Below are some compounds and their features.

COMPOU	NDS	FEATURES
CR	980	High strength, fiber filled
NBR	160	Low-temperature applications
HNBR	209	High-performance nitrile
FKM	926,929	Explosive decompression-resistant elastomer, fiber reinforced
FLOURAZ®	799, 790	High-temperature, steam resistant elastomer
CHEMRAZ®	510, 522, 526	The ultimate chemically resistant elastomer, explosive decompression- resistant compound

CUSTOM DESIGNS

Thermoplastics utilized include:

- Arlon[®]—Greene, Tweed developed various proprietary grades of PEEK that give strength/high temperature/resistance to erosion/ high pressure capability and excellent chemical compatibility
- Avalon[®]—Greene, Tweed has developed several chemically and physically superior proprietary grades of PTFE for the oilfield industry.

When used in open glands, Greene, Tweed designers can accurately control the FSH (free stack height) and CSH (confined stack height) ensuring optimum performance.

Contact Us

Greene, Tweed	Tel: +1.281.	765.4500
Oilfield	Tel: +1.800.	927.3301
Houston, TX, USA	Fax: +1.281.	765.4553
www.gtweed.com		

Service-proven designs combine elastomer and thermoplastic adapters.

- Vee seal stacks can be supplied as a complete assembly incorporating thermoplastic end and central adapters.
- Thermoplastic adapters are noncorrosive and nongalling at tighter tolerances and designed to act as bearing and debris barriers.

The staging effect of elastomeric and thermoplastic sealing elements gives sealing integrity across a broad range of service conditions.

Arlon[®] is manufactured from PEEK[™]. Greene, Tweed is part of Victrex's partnership program of key suppliers of quality product. Manufactured from PEEK[™] polymer developed by Victrex. © 2005, Greene, Tweed all rights reserved All trademarks are property of their respective owners. 02/05-GT DS-US-0F-004

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty that shall be applicable to such products.

NONELASTOMERIC SEAL STACK Solutions for High-Pressure Condensate Pumps

CASE STUDY

- Saves over \$40,000 per year in lubrication costs
- · Increases seal life four fold
- · Provides zero leakage and ability to run dry

Equipment

· Condensate pump on a gas platform in the southern North Sea

Existing Seals

• Braided packings with virgin PTFE backups

Problem

· The condensate was leaking, and a specific lubrication was required to prevent any contamination of the condensate. The lubrication costs were approximately £47,000 per year (\$78,000 U.S.) for six pumps. Neither the pump manufacturer nor the existing seal supplier offered help with the problem.

Solution

· After visiting the platform and gathering data, we designed a solution that removed the need for expensive lubricants. Greene. Tweed's solution involved a new seal stack capable of running without lubrication, removing the requirement for a complicated delivery system as well as creating considerable cost savings.

SEAL CONFIGURATION

Female—End Adapter

This component acts as backup for the seal stack, preventing extrusion of the softer primary seal materials and providing a stable base for the seal stack to rely on during higher loading.

Manufactured from a proprietary Greene, Tweed material, Arlon® 1000, the female-end adapter has very tight tolerances, enabling it to act as a bearing surface to prevent concentricity problems.

Contact Us

Greene Tweed Oilfield Houston, TX, USA

Tel: +1.281.765.4500 Tel: +1.800.927.3301 Fax: +1.281.765.4553

Vee Ring

This component, manufactured from a proprietary-filled PTFE, gives the sealing redundancy within the stack, offering support to the primary seal ahead of it and helping to create the column mechanical load throughout the stack that makes the assembly so effective.

Metal Spring Energized (MSE®) Lip Seal

This primary seal consists of a wholly machined jacket of proprietary PTFE energized by a single metallic finger spring. The MSE offers low friction coefficient, excellent wear rate and full fluid compatibility.

Hat Ring

As the initial element in the seal arrangement, the hat ring provides a number of functions. Manufactured from Arlon 1000, it protects the sealing lips of the MSE from any unforeseen damage during reciprocation of the plunger by preventing the sealing lips from slamming against the groove wall.

All trademarks are property of their respective owners

02/05-GT

CS-US-OF-001

0

P

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty that shall be applicable to such products.

ELASTOMERIC/THERMOPLASTIC VEE RINGS

SEALING SOLUTIONS

A multi-lip (redundant), pressure-activated seal is constructed of elastomeric and/or thermoplastic components. Pressure differential develops across each lip and a column mechanical load expands across the entire packing set and is constant at any point in the set.

Vector forces acting on the lips of the Vee induce a radial load that is a function of the Vee ring design.

The redundancy concept of the multiple lips maintains sealing integrity over all application parameters, minimizing the chances of catastrophic failure.

SEAL CONFIGURATION

Gland Design

Greene, Tweed designers prefer open gland configurations to accurately control the FSH and CSH (Free and Confined Stack Heights) to give optimum seal performance.

Adapters

End and central adapters are manufactured from Greene, Tweed proprietary thermoplastics.

Thermoplastics do not gall or corrode and can be designed as a bearing or debris barrier.

ELASTOMER SELECTION

HNBR	209	
NBR	979	
FKM	929 fiber reinforced	
	926 explosive decompression resistant	
CR	980	
Fluoraz®	790, 799	
Chemraz®	510, 526	
* Please refer to GT for design constraints and recommendations		

THERMOPLASTIC SELECTION

Arlon®Proprietary grades of PEEK™Arlon® 1000Virgin, injection moldedArlon® 1160Glass-reinforced gradeArlon® 1260Carbon-fiber-reinforced gradeArlon® 1330Lubricated gradeArlon® 1555Carbon fiber/Lubricated gradeAvalonProprietary reinforced grades of PTFEPolyphenylene Sulphide (PPS)Arlon® 1260		
Arlon® 1000Virgin, injection moldedArlon® 1160Glass-reinforced gradeArlon® 1260Carbon-fiber-reinforced gradeArlon® 1330Lubricated gradeArlon® 1555Carbon fiber/Lubricated gradeAvalonProprietary reinforced grades of PTFEPolyphenylene Sulphide (PPS)	Arlon®	Proprietary grades of PEEK [™]
Arlon® 1160Glass-reinforced gradeArlon® 1260Carbon-fiber-reinforced gradeArlon® 1330Lubricated gradeArlon® 1555Carbon fiber/Lubricated gradeAvalonProprietary reinforced grades of PTFEPolyphenylene Sulphide (PPS)	Arlon [®] 1000	Virgin, injection molded
Arlon® 1260Carbon-fiber-reinforced gradeArlon® 1330Lubricated gradeArlon® 1555Carbon fiber/Lubricated gradeAvalonProprietary reinforced grades of PTFEPolyphenylene Sulphide (PPS)	Arlon [®] 1160	Glass-reinforced grade
Arlon® 1330Lubricated gradeArlon® 1555Carbon fiber/Lubricated gradeAvalonProprietary reinforced grades of PTFEPolyphenylene Sulphide (PPS)	Arlon [®] 1260	Carbon-fiber-reinforced grade
Arlon® 1555Carbon fiber/Lubricated gradeAvalonProprietary reinforced grades of PTFEPolyphenylene Sulphide (PPS)	Arlon [®] 1330	Lubricated grade
AvalonProprietary reinforced grades of PTFEPolyphenylene Sulphide (PPS)	Arlon [®] 1555	Carbon fiber/Lubricated grade
Polyphenylene Sulphide (PPS)	Avalon	Proprietary reinforced grades of PTFE
	Polyphenylene Sulphide (PPS)	

* Please refer to GT for design constraints and recommendations

© 2005, Greene, Tweed all rights reserved All trademarks are property of their respective owners. 03/05-GT DS-US-0F-009

Note: Please refer to Greene, Tweed & Co. Houston Engineering for part number.

Contact Us

Greene, Tweed & Co. Oilfield	Tel: +1.281.765.4500 Tel: +1.800.927.3301
Houston, TX, USA	Fax: +1.281.765.4553
www.gtweed.com	

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty that shall be applicable to such products.

HPHT Seal Design Options High Pressure, High Temperature

ELASTOMERS & THERMOPLASTICS

When using elastomers and thermoplastics in critical service applications, there are a number of options in terms of seal configuration and material choice that effectively seal and provide maximum product reliability. These combinations vary based on the sealing conditions faced. Greene, Tweed design engineers pick the best matched material characteristics for optimum seal performance. The table below focuses on designs of multiple redundant seal stack combinations for both uni- and bi-directional HPHT (High Pressure High Temperature) and LPLT (Low Pressure Low Temperature) applications.

SPECIFICATIONS

Unidirectional

Vee stacks were introduced from a redundancy perspective but used the same compound across the stack. Greene, Tweed introduced the composite stack that combines different elastomers, thermoplastics and metals to cover all service conditions. The following design geometries incorporate materials developed specifically for downhole environment.

Bi-directional

This design incorporates end adapters, center adapters and combinations of steel, elastomeric, Ryton (PPS) and filled PTFE (Avalon[®]) Vee Rings. In this specific example Arlon[®] 1000, Fluoraz[®] 799 and Avalon 16 are used. The combination of elastomer, steel and thermoplastic will seal at both HPHT and LPLT.

Bi-directional—Nonelastomeric MSE®

This design incorporates end adapters, center adapters and combinations of thermoplastic and filled PTFE (Avalon) Vee rings. In this specific example Arlon 1000, Fluoraz 799 and Avalon 16 are used. The combination of elastomer and thermoplastic will seal at both HPHT and LPLT. The multiple redundancy concept ensures reliable sealing.

ىم

All trademarks are property of their respective owners

03/05-GT DS-US-OF-025

© 2005, Greene, Tweed all rights reserved

MSE[®] with Back-up Ring MSE[®] Stack Assemblies

Unidirectional MSE assembly on a choke valve featuring an MSE with a proprietary Avalon jacket with a Elgiloy double-coil spring and Arlon 1000 back-up ring. The Avalon jacket was chosen to pass a 200 psi (1.38 Mpa) nitrogen gas test at ambient temperaure. In addition, it also had to hold 15000 psi (103.42 Mpa) at a higher temperature (350°F, 177°C). It has a camactivated Arlon 1000 back-up ring to prevent creep and extrusion of the jacket. For static applications the cam-activated back-up ring is preferred because it encourages the backup to close any extrusion gap. MSE assembly Jacket, Avalon® MSE70-100321, Back-up Ring Arlon® 1000 5670-1683-0450

MSE[®]—Bi-directional with Hat Rings

Typically two separate grooves are used to handle bi-directional pressure. Greene, Tweed looked at this and developed a single seal assembly capable of handling pressure from both sides, reducing machining cost, simplifying hardware design and installation. The hat ring stabilizes and supports the stack while eliminating damage to the seal. This, in effect, is a modified end adapter. The center adapter prevents twisting and ensures the seal stack remains stable in the gland. This is an effective seal at 350°F (177°C) and 15,000 psi (103.42 Mpa).

MSE[®]—Combination Stack Assembly

The next evolutionary step is the MSE stack assembly. This incorporates primary and secondary sealing to ensure multiple redundancy. The MSE is the primary seal, the inclusion of Vee-style seals allows the design to feature combinations of thermoplastics capable of resisting various hostile conditions. This seal is capable of holding 20,000 psi at 350°F (177°C) and passing ports at shifting pressures of 1500 and 4500 psi (31.03 Mpa). Our proprietary Avalon material is a high-wear material suited for erosive conditions.

www.gtweed.com

Contact Us Greene. Tweed Oilfield Houston, TX, USA

Tel: +1.281.765.4500 Tel: +1.800.927.3301 Fax: +1.281.765.4553

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty that shall be applicable to such products.

© 2005, Greene, Tweed all rights reserved All trademarks are property of their respective owners. 03/05-6T D5-U5-0F-025

3

CSA (COIL SPRING ACTIVATED) Seal Stack Solutions for Riser/Coupling Applications

SEALING DESIGN SOLUTIONS

- · Increased seal life, no measurable leakage
- · Handled high ovality and pressure effectively
- · Proved easy to install
- Should be considered for application with large clearances or where ovality may cause problems

Equipment

· Coupling application, such as riser joints

Existing Seals

· U-Cup elastomer seal

Problem

• A coupling application, e.g., riser joints, utilizing a U-cup elastomer seal was experiencing problems with the pressure capability of existing seals and problems caused by high ovality in riser applications.

Solution

 The CSA gives the benefits of a true elastomer accommodating large changes in squeeze caused by ovalization, high-diametral clearances or large eccentricities caused by wide tolerances. The CSA seal, giving a virtually constant force, provides optimum seal performance at both low and high temperatures. Dependent upon material used, temperature performance can range from 65°F to 500°F (18°C to 260°C). The CSA seal has tested to pressures of 15,000 psi. The CSA seal is ideal for use on coupling applications, such as riser joints, or where hardware sees excessive side forces.

The solution consisted of a three-part assembly arranged as follows:

- Elastomer jacket (black)
- Metal spring (red)
- Arlon heel bearing (green)

Contact Us Greene, Tweed

Oilfield Houston, TX, USA Tel: +1.281.765.4500 Tel: +1.800.927.3301 Fax: +1.281.765.4553

Testing

The CSA was tested in singular and combined applications of tension, internal pressure (water unless otherwise stated) and bending and then stabilized for 15 minutes.

- 1. Internal pressure to 15,000 psi.
- 2. Breakout, inspect, make-up, then apply bending to 220,000 ft-lb. with 100 psi internal monitor pressure.
- 3. Tension of 1.2 million lb. with 100 psi internal monitor pressure.
- 4. Breakout, inspect, make-up, then repeat. The monitor pressure was maintained during load changes and left overnight.

No observable leakage occurred during the test.

The next test sequence was for combined loading with 8,000 psi continuously maintained internal pressure as follows:

- 5. 110,000 ft-lb. bending only.
- 6. 72,000 ft-lb. bending, 200,000 lb. tension.
- 7. 36,000 ft-lb. bending, 400,000 lb. tension repeated.

During the combined load testing, no loss of pressure was observed, even during load changes.

Gas testing with nitrogen was then carried out as follows:

8. Pressure to 500 psi, stabilize and hold for 15 minutes.

9. Pressure to 10,000 psi, stabilize and hold for 15 minutes. No measurable leakage occurred.

Rating

Tension 800,000 lb.; pressure 10,000 psi; bending 150,000 ft-lb.

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor a modification or alteration of our standard warranty that shall be applicable to such products.